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Abstract
We investigate the neutralization probability of a +1 ion moving parallel to a
metal surface, mainly using the Noziéres and Dominicis theory (ND theory),
which was applied to the edge singularities in x-ray absorption and emission
spectra in metals. In particular, we focus on the effects due to the sudden
disappearance of the image potential in the neutralization process. From the
analysis, we found that the neutralization probability is given by P(i → f) ∝

π
�(1−α)

( D
�

)α , where D and � are the band width and the gamma function. The

factor α = 2δ/π − (δ/π)2 is given by the phase shift (δ: phase shift on
Fermi surface), and the energy difference between the initial and final states,
�, includes the kinetic energy of the ion and various other phenomenological
factors. The singularity caused from the sudden disappearance of the image
potential enhances or reduces the neutralization probability depending on the
symmetry of atomic orbital of the ion. When the ion velocity is too fast to
form an image potential, the neutralization process would proceed without
the creation of an image potential, accompanying an excitation of a surface
plasmon; as a result of plasmon excitation the ion velocity becomes slower than
the plasma frequency because of screening effects. In this paper, we apply the
ND theory to the case of slow ion motion and discuss the dynamics.

1. Introduction

The neutralization process of charged particles occurring in front of metal surface is an
important issue in the field of surface science. Experimentally the neutralization process has
been examined by various methods; they are analysis of the energy distribution of electrons
ejected from the surface [1], the large-angle back-scattering technique for multi-charged ion
neutralization [2–6], measurement of the number and charge state distribution of particles

0953-8984/06/265911+15$30.00 © 2006 IOP Publishing Ltd Printed in the UK 5911

http://dx.doi.org/10.1088/0953-8984/18/26/011
mailto:kondou@net.nagasaki-u.ac.jp
http://stacks.iop.org/JPhysCM/18/5911


5912 S-I Kondo and K Yamada

formed after the reflection of the incident ions [7, 8] and spin-labelling techniques using
electron-spin-polarized He+ ions coupled with energy-resolved measurements of the ejected
electron polarization [9–11].

If a multi-electron system plays a determining role in the neutralization process, the
Auger transition process accompanying possible electron emission can be expected to
appear [12–14]. Since this process is associated with the many-body problem, it seems very
difficult to treat the Auger neutralization process theoretically. Accordingly various theoretical
methods such as simplified electron wavefunctions [15–18], the inclusion of phenomenological
screening [15, 17, 19] and the neglect of screening caused by electron–electron interaction [20]
have been proposed to account for the Auger transition quantitatively. Recently Lorente
calculated the Auger neutralization rate of He+ and the de-excitation rates of excited He atoms
above an Al surface [21], by developing a quantitative treatment of the Auger neutralization
process; he introduced a self-consistent screening method for the electron–electron interaction
using a self-consistent representation of the metal surface [22–24] and developed a full three-
dimensional non-perturbative method regarding the metal state affected by the presence of the
ion.

On the other hand, a resonant neutralization process appears when only one electron is
associated with the neutralization process. The electron transferred from the metal surface
usually occupies an excited state of the ion without the emissions of electrons following the
de-excitation process. Borisov and Teillet-Billy proposed an effective theory of resonance
neutralization which is in quantitative agreement with experiments [25, 26].

Nevertheless the neutralization process in the low energy levels remains an open problem
both experimentally and theoretically. Certainly the Auger neutralization process has been
commonly observed rather than the resonance neutralization process. For example, Akazawa
and Murata proposed that the Auger neutralization process is dominant in a low-energy region
of the neutralization processes of Ar+, N+, N+

2 ions in front of a Pt(001) surface [27].
However, regarding the neutralization process of a He+ ion with low energy in front of the
solid surface, the resonance neutralization process was reported to be dominant [28–30] with
the formation of an excited He atom (He∗ atom), although this neutralization process had been
generally considered to be an Auger process. Therefore it seems difficult to determine which
neutralization process is dominant, because neutralization processes can be determined as a
result of very complicated phenomena associated with the energy level of the vacant ionic
orbital and that of the valence band of metal as well as a multi-electron system involving the
many-body problem.

Shao, Nordlander and Langreth theoretically pointed out the appearance of the Kondo
effect when a moving ion is approaching a surface with very low kinetic energy (i.e., sufficiently
small velocity) [31]. However, the above theoretical analysis can be derived from the restricted
assumption that the velocity of the moving ion is extraordinarily slow to cause the Kondo effect.
When the kinetic energy of the moving ion is of the order of several hundred electron volts,
theoretical and experimental studies have not been sufficiently developed. In addition, for a
neutralization processes occurring in the vicinity of metal surface, there has been no theoretical
treatment which takes into account the fact that the image potential due to the positive ion
suddenly vanishes at the very moment of neutralization. Here we note that the image potential
in a real situation represents the polarized charge near the metal surface induced by the ion.

Accordingly, in the present work, we investigate the neutralization probability of +1 ion in
front of a metal surface, mainly based on the Noziéres and Dominicis (ND) theory [32]. The ND
theory has been used to account for the edge singularities in the x-ray absorption and emission
spectra in metals. By using this theory, we consider the effects due to the sudden vanishing of
surface charge at the neutralization process and apply these theoretical results to the analysis of
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Figure 1. Schematic illustration for a +1 ion moving parallel to the metal surface and being
neutralized as a result of electron transfer.

the neutralization process, focusing on the evaluation of the neutralization probability. In the
following, we assume a resonance neutralization process. In addition, neutralized atoms are in
excited states, not in the ground state, because of our assumption of resonance neutralization.

2. Theoretical methods

2.1. Perturbation method

Let us examine the physical process as shown in figure 1, where a +1 ion moving parallel to
the metal surface with velocity V is neutralized as a result of electron transfer from the metal
surface to the ion. As is known from electromagnetism, the charge of −e induced in the vicinity
of surface, i.e., the image potential following the motion of +1 ion, is formed in the metal. Such
a negative charge −e can be formed as a result of the amassing of many electrons responding
quickly to the motion of the positive ion. An illustration of the formation of surface charge
is shown in figure 2. Based on the above discussion, we can easily infer that the formation
of surface charge is impossible in the case of very fast ion velocity, because electrons cannot
respond to the fast motion of ion. To screen the static potential due to the positive ion, we need
electron–hole pair excitations in the vicinity of the Fermi surface. In that case electron–hole
pair excitations possessing low excitation energy are realized in a macroscopic number of pairs.
The electron Fermi surface and the hole Fermi surface should be overlapped. The condition is
q < 2kF. When q > 2kF, it is impossible to realize electron–hole pair excitation because of
low excitation energy.

To comprehend and to analyse the preceding discussion, let us look at this problem from
a different viewpoint. We take the coordinate fixed to the positive ion, where the metal moves
by the velocity −V . The virtual movement of electrons in the metal which is required in the
relative relation to the ion, leads to the shift of the Fermi sphere. The shifted momentum −q
from the original point (0, 0, 0) in Fermi sphere is determined by

−q = −mV/h̄, (1)

where m is the mass of an electron. Owing to the shift of the Fermi sphere, the energy of
each electron is replaced by Ek–q instead of Ek. As illustrated in figure 3(A), one can see that
some electrons close to the Fermi surface exceed the Fermi energy EF. In order to screen the
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Figure 2. Schematic illustration of the formation of image potential.

(This figure is in colour only in the electronic version)

charge of the positive ion which is staying at origin, we need electron–hole pair excitation in
the vicinity of the Fermi surface with V = 0. The electron–hole pair excitation in the vicinity
of the shifted Fermi surface contributes to the creation of negative charge potential. Therefore
we need the overlap between two Fermi surfaces separated by q . However, as is shown in
figure 3(B), the creation of negative charge potential is never realized physically, when the
energy of all electrons inside the shifted Fermi sphere exceeds EF and the two shifted Fermi
surfaces do not overlap. Through a simple calculation concerning Ek–q > EF, all electrons
are found to exceed EF in the case of q(=|q|) > 2kF (see figure 3(B)). Thus we can conclude
that the value of q = 2kF is the roughly estimated upper limit, beyond which induced charge
cannot be formed. No induced charge appears if the ion velocity V is larger than 2vF (vF:
Fermi velocity). This result means in the real picture that electron–hole pairs in metal cannot
follow the ion for V > 2vF.

The above conclusion is deduced from the viewpoint of excitation energy. To verify the
above conclusion, let us discuss the upper limit of ion velocity in the light of plasma oscillation.
Plasma frequency fp in metal is given by

fp = 1

2π

√
ne2

ε0m∗ , (2)

where n, e, ε0 and m∗ are the electron density per unit volume, charge of the electron,
permittivity in vacuum and effective mass of the electron, respectively. To discuss this issue,
we define L as the order of amplitude of plasma oscillation (0.5–1 nm), τ as the time when the
positive ion traverses the distance L and τp as the period of plasma oscillation (=1/ fp).

Our idea is that no induced charge can be created if τ < τp because electrons cannot have
enough time to respond to the positive charge of the moving ion. Since τ = L/V , no induced
charge is observed in the metal when the ion velocity V satisfies

V > L/τp = L fp = L

2π

√
ne2

ε0m∗ . (3)

By using the above equation, we obtain V > 0.7vF for L ∼ 0.5 nm, EF = 3 eV, and V > 1.9vF

for L ∼ 1 nm, EF = 10 eV. When evaluating V , we adopt m∗ = m(9.108 × 10−31 kg).
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Figure 3. (A) The shift of the Fermi sphere due to the presence of momentum −q. (B) Schematic
illustration of shifted Fermi sphere when q(=|−q|) is more than 2kF and less than 2kF, together
with displaying each energy Ek–q.

Thus, from this approach, we can also obtain the same conclusion that no image potential is
formed when V > 2vF and one can see that V = 2vF is the roughly estimated upper limit for
conduction electrons to rearrange and form an image potential.

Recently, by using the linear response theory (LRT) and random phase approximation
(RPA), the time response of induced screening charge in a two-dimensional electron gas was
examined by Alducin et al [33]. From their theory, a time longer than 0.5 fs (1 fs = 10−15 s)
is required so as to transit to the steady-state regime when an impurity charge is suddenly
created in a 2D electron gas. Following the previous discussion, we can easily infer that
the rearrangement of conduction electrons to screen a positive ion cannot be completed when
τ < 0.5 fs. From this inequality, V > 0.97vF for L ∼ 0.5 nm, EF = 3 eV and V > 1.1vF for
L ∼ 1 nm, EF = 10 eV are estimated.

Considering those discussions and estimations from the viewpoints of energy, plasma
oscillation and the time response for induced screening, we can, therefore, conclude that the
induced charge cannot follow the moving ion nor be created, when the velocity of positive ion
V exceeds 2vF. However, it should be noticed that the value of 2vF (or 2kF) does not mean such
a critical point as the theoretically defined Curie temperature in magnetism but means a roughly
defined threshold value. Thus this value (2vF or 2kF) is neither strictly defined nor proved but
rather remains uncertain. Further experimental results are expected to verify our assumption.



5916 S-I Kondo and K Yamada

Then we turn to the case of very slow motion of the ion (V < 2vF), where a negative
charge induced by the positive ion is formed to decrease the electromagnetic energy between
the ion and electrons. In order to analyse this neutralization process theoretically and have
the problem simplified, we assume that the charge distribution of the moving ion is isotropic
and neutralization process is the resonance one. Then we can write down the perturbation
Hamiltonian of the induced negative charge as follows:

Ĥ ′(q) =
∑

k′,k,σ

Vk′k(q)Ĉ+
k′σ Ĉkσ . (4)

Based on the above discussion, we assume Vk′k(q) satisfies

lim
q→2kF

Vk′k(q) ∼= 0. (5)

When the velocity of the ion is close to 2vF, the motion of electrons responding to the ion is
considered not to be so effective as to compensate the positive charge; thus, the negative charge
induced near the surface seems to decrease rapidly in the vicinity of 2qF and finally reduces
to almost 0 at q = 2kF. Consequently Vk′k(q) decreases rapidly as q approaches 2kF and is
almost 0 at q = 2kF.

Next let us calculate the wavefunction when such a perturbation Hamiltonian of
equation (4) is introduced into the system. Within the first-order perturbation, 	 is given by

	 = 	0 + 	1, (6)

where 	0 represents the wavefunction of the unperturbed state. Using the perturbation method,
we can express 	1 in the following form:

	1 =
∑
K′,K

D(q)

K′KĈ+
K′ ĈK	0 |K′| > kF, |K| < kF. (7)

D(q)

K′K can be determined by

D(q)

K′K(EK′ − EK) + 〈KK′|Ĥ ′(q)|	0〉 = 0 |K′| > kF, |K| < kF, (8)

where

|K′K〉 = Ĉ+
K′ĈK|	0〉.

In equation (8), the term 〈kk′|Ĥ ′(q)|	0〉 is given by

〈KK′|Ĥ ′(q)|	0〉 = VK′K(q). (9)

Accordingly, D(q)

K′K is given by

D(q)

K′K = −VK′K(q)

EK′ − EK
. (10)

Thus, within the first-order perturbation, we can obtain the wavefunction 	 as follows:

	 =
(

1 −
∑
K,K′

VK′K(q)

EK′ − EK
Ĉ+

K′ĈK

)
	0 |K′| > kF, |K| < kF. (11)

The normalized 	̃ is given by

	̃ = 	0 + 	1√
1 + |	1|2

.

Accordingly the overlap integral 〈	0|	̃〉 is written as

〈	0|	̃〉 = 1√
1 + ρ2|V0|2|u(q)|2 ln N

. (12)
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In the above equation, ρ and N denote the density of states of conduction electrons and the total
number of conduction electrons, respectively. When deducing equation (12), we have assumed
that VK′K(q) = V0u(q) and ρ is flat.

Since Vk′k(q) ∼= 0 at q = 2kF as stated in equation (5), |u(q)| is almost 0 at q = 2kF.
Therefore we can easily understand that Anderson’s orthogonality theorem does not hold when
q is larger than 2kF. In this case electron–hole pair excitations are impossible, because the
velocity of the moving ion is too fast for the electrons in the metal to compensate the positive
charge, and the neutralization process is expected to proceed without any formation of surface
charge.

2.2. Calculation of transition probability by Noziéres and Dominicis theory

Based on the above results and discussion, let us calculate the transition probability in the case
of slow ion velocity (V < 2vF). As pointed out in the previous paragraph, the neutralization
process proceeds under the presence of induced surface charge. The transition probability
P(i → f) of initial state i (ionic state) to final state f (neutralized state) is given by

P(i → f) = 2π

h̄

∑
f

|〈f|Ĥ ′|i〉|2δ (Efinal − Einitial) (13)

and

Ĥ ′ =
∑

Q

(TQaĈ
+
Q Ĉa + TaQĈ+

a ĈQ), (14)

where Efinal and Einitial represent the energy of the final and initial states, respectively. Ĉ+
Q and

Ĉ+
a are the creation operator of the conduction electron with momentum Q and of the localized

electron state |a〉. TaQ is the matrix element of electron transfer from state |Q〉 to |a〉. The
difference between Efinal and Einitial is given by

Efinal − Einitial = Ef − Ei + Ea + Kf − Ki. (15)

In the above equation, Ef and Ei are energies of final and initial states of metal surface, Ea is
the energy of the localized electron state |a〉. Kf and Ki are the kinetic energies of the moving
ion in the final and initial states. Additionally, the final state of kinetic energy Kf includes the
energy term related to the recoil effect arising from the scattering between the metal surface
and moving ion.

Concerning the initial state, an impurity potential can be induced into the metal surface
because of the presence of a positively charged ion above the metal surface; thus we can write
the Hamiltonian Ĥi to describe the initial state of the metal surface in the following form:

Ĥi = H q
i =

∑
k

EkĈ+
k Ĉk +

∑
k′,k

Vk′k(q)Ĉ+
k′ Ĉk. (16)

In equation (16), it should be noticed that limq→2kF Vk′k(q) ∼= 0 as stated in the previous section
and that the final and initial Hamiltonian are same at q = 2kF because of annihilation of the
image potential.

After the neutralization of the +1 ion through the electron transfer from the metal surface
to the moving ion, the induced impurity potential vanishes; consequently the Hamiltonian Ĥf

corresponding to the final state is given by

Ĥf =
∑

k

EkĈ+
k Ĉk. (17)

Ĥi and Ĥf satisfy

Ĥi|i〉 = Ei|i〉 and Ĥf|f〉 = Ef|f〉, (18)

where states |f〉 and |i〉 denote eigenstates for Ĥi and Ĥf, respectively.
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The factor |〈f|Ĥ ′|i〉|2 in P(i → f) of equation (13) can be expressed as

|〈f|Ĥ ′|i〉|2 = 〈f|Ĥ ′|i〉〈i|Ĥ ′|f〉 =
∑

Q

∑
Q′

TaQTQ′a〈f|Ĉ+
a ĈQ|i〉〈i|Ĉ+

Q′Ĉa|f〉. (19)

Concerning the above equation, two processes are involved: one is the transfer process of
an electron with momentum Q from the metal surface to the moving ion and the other is that
of an electron from a neutralized atom to the metal surface with momentum Q′. Consequently,
considering these electron transfer processes, the transition probability of equation (13) can be
expressed in the following form:

P(i → f) = 2π

h̄

∑
k

∑
k′

TakTk′a〈f|Ĉ+
a Ĉk|i〉〈i|Ĉ+

k′ Ĉa|f〉δ(Ef − Ei + Ea + Kf − Ki). (20)

Finally, using the Hamiltonians of Ĥi, Ĥf and eigenstates |f〉, |i〉 together with equation (18)
and assuming the electron transfer matrix elements Tak and Tka to be constant, namely Tak →
T0, we can write down the transition probability P(i → f) as follows:

P(i ⇒ f) = 2

h̄
|T0|2 Re

{∑
k,k′

∫ 0

−∞
dt exp[i(Ea + Kf − Ki)t]

× 〈i|Ĉ+
k′ exp(iHft)Ĉk exp(−iH q

i t)|i〉
}
. (21)

Furthermore, we redefine

t → t − t ′, t ′ > t . (22)

Then, equation (21) is rewritten as

P(i → f) = 2

h̄
|T0|2Re

{∫ 0

−∞
d(t − t ′) exp[i(Ea + Kf − Ki)(t − t ′)]

×
∑
k,k′

〈i|Ĉ+
k′ (t ′)Ŝ(t ′, t)Ĉk(t)|i〉

}
= 2

h̄
|T0|2Re

{∫ 0

−∞
d(t − t ′)F(t − t ′)

}
, (23)

where

Ŝ(t ′, t) ≡ exp(iĤ q
i t ′) exp(iĤf(t − t ′)) exp(−iĤ q

i t) (24)

Ĉ+
k′ (t ′) ≡ exp(iĤ q

i t ′)Ĉ+
k′ exp(−iĤ q

i t ′) (25)

Ĉk(t) ≡ exp(iĤ q
i t)Ĉk exp(−iĤ q

i t) (26)

F(t − t ′) ≡
∑
k,k′

Fk′k(t − t ′) (27)

Fk′k(t − t ′) ≡ exp[i(Ea + Kf − Ki)(t − t ′)]〈i|Ĉ+
k′ (t ′)Ŝ(t ′, t)Ĉk(t)|i〉. (28)

To simplify further calculation, we introduce the following variable:

ξ ≡ Ea + Kf − Ki. (29)

Next, we define the Green function ϕk′k(ττ ′, tt ′) as follows:

ϕk′k(ττ ′, tt ′) ≡ 〈i|T[Ĉ+
k′ (τ )Ĉk(τ

′)Ŝ(t ′, t)]|i〉
〈i|Ŝ(t ′, t)|i〉 . (30)

Finally, using the Green function and variable defined in equation (29), F(t − t ′) can be
expressed as

F(t − t ′) ≡
∑
k,k′

Fk′k(t − t ′) = eiξ(t−t ′)〈i|S(t ′, t)|i〉 lim
τ→t ′
τ ′→t

∑
k′k

ϕk′k(ττ ′, t t ′). (31)
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The Green function defined in equation (30) satisfies the following Dyson equation.

ϕk′k(q : ττ ′, tt ′) = G0
k′k(τ − τ ′) + i

∫ t ′

t
dτ ′′ ∑

QQ′
G0

k′Q′(τ − τ ′′)VQ′Q(q)ϕQk(τ
′′τ ′, t t ′), (32)

where

G0
k′k(τ − τ ′) = 〈i|TĈ+

k′ (τ )Ĉk(τ
′)|i〉. (33)

Furthermore, assuming V
(q)

Q′Q = V0u(q) as used in equation (12), we can write down the Dyson
equation of (32) in the simplified form,

ϕ(ττ ′, tt ′) = G0(τ − τ ′) + iV 0u(q)

∫ t ′

t
dτ ′′G0(τ − τ ′′)ϕ(τ ′′τ ′, t t ′), (34)

where

ϕ(ττ ′, tt ′) =
∑
k′k

ϕk′k(ττ ′, t t ′), (35)

G0(τ − τ ′) =
∑
k′k

G0
k′k(τ − τ ′). (36)

As shown in equations (34)–(36), we introduced local Green functions ϕ(ττ ′, t t ′) and
G0(τ − τ ′). Actually virtual photon emission associated with the momentum of kk′ could
possibly appear because of the vector potential caused by the moving ion current. However, we
assume that the velocity of the moving ion is not so fast as to cause such an emission; thus our
treatment which introduces ϕ(ττ ′, tt ′) and G0(τ −τ ′) instead of ϕkk′(ττ ′, t t ′) and G0

kk′(τ −τ ′)
is reasonable.

Accordingly, F(t − t ′) is written in a very simple form,

F(t − t ′) = eiξ(t−t ′)〈i|Ŝ(t ′, t)|i〉 lim
τ→t ′
τ ′→t

ϕ(ττ ′, t t ′). (37)

Our goal is to calculate the transition probability through the calculation of the Green function.
For the purpose of estimating the Green function ϕk′k(ττ ′, t t ′), we introduce the following
operators defined as follows:

Ĉ0+
k (τ ) ≡ exp(iĤ0τ )Ĉ+

k exp(−iĤ0τ ), (38)

Ĉ0
k(τ

′) ≡ exp(iĤ0τ
′)Ĉkexp(−iĤ0τ

′), (39)

and

Ĥ0 =
∑

k

EkĈ+
k Ĉk. (40)

As has been already shown in equation (17), Ĥ0 = Ĥf. Thus 〈i|TĈ0+
k (τ )Ĉ0

k′(τ ′)|i〉 is given by

ξ 0
kk′(τ − τ ′) ≡ 〈i|TĈ0+

k (τ )Ĉ0
k′(τ

′)|i〉
= δk′k exp[i(τ Ek − τ ′Ek′)]{θ(τ − τ ′)θ(kF − |k|) − θ(τ ′ − τ )θ(|k| − kF)}. (41)

Therefore we can obtain

ξ 0(τ − τ ′) ≡
∑

k

∑
k′

ξ 0
kk′(τ − τ ′) = ρ

i(τ − τ ′)
[1 − exp(−iD|τ − τ ′|)], (42)

where D and ρ are the band width and density of states of conduction electrons, respectively. In
addition, we assume that the band is flat without energy dependence. Then the Dyson equation
for G0(τ − τ ′) is

G0(τ − τ ′) = ξ 0(τ − τ ′) − iV0u(q)

∫ +∞

−∞
dτ ′′ξ 0(τ − τ ′′)G0(τ ′′ − τ ′). (43)
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By applying a Fourier transformation to equation (43), we obtain

G0(τ − τ ′) = ρ

i(1 + V 2
0 u2(q)ρ2π2)

1

τ − τ ′ − i
V0u(q)ρ2π2

1 + V 2
0 u2(q)ρ2π2

δ(τ − τ ′). (44)

Substituting the above result into equation (34), we can obtain the following Dyson equation:

ϕ(ττ ′; tt ′) = G0(τ − τ ′)
1 − V0�

− tan δ

π

∫ t ′

t
P

(
1

τ − τ ′′

)
ϕ(τ ′′τ ′; t t ′) dτ ′′, (45)

where

� ≡ V0u(q)ρ2π2

1 + V 2
0 u2(q)ρ2π2

and tan δ ≡ −πρV0u(q). (45′)

The solution of the above equation, based on the Muskhelishvili method [34], is given by

ϕ(ττ ′; tt ′) = Ga(τ − τ ′)
[
(τ ′ − t ′)(t − τ )

(τ − t ′)(t − τ ′)

] δ
π

, (46)

where

Ga(τ − τ ′) = −iρ

[
P

(
1

τ − τ ′

)
+ π tan θδ(τ − τ ′)

]
and tan θ ≡ − 1

πρV0u(q)
− cot δ.

(46′)

The above equation (46) shows singularities in the limit of τ → t ′ or τ ′ → t because of our
approximation of the Green function; thus, we define a parameter −i/D as t ′ − τ = τ ′ − t =
−i/D in the limit of τ → t ′ and τ ′ → t to correct our calculation. Consequently, the exact
solution is given by

lim
τ→t ′
τ ′→t

ϕ(q : ττ ′, tt ′) = ϕ(t ′t; t t ′) = −iρ
(i(t ′ − t)D)

2δ
π

t ′ − t
. (47)

Next let us evaluate the S matrix. The S matrix is defined as

Ŝ(t ′, t) = T

[
exp

(
−i

∫ t ′

t
Ĥ ′(τ ) dτ

)]
, (48)

where

Ĥ ′(q) = −
∑
k,k′

Vkk′(q)Ĉ+
k Ĉk′ . (49)

We introduce g(t ′, t) for further calculation; g(t ′, t) is given by

g(t ′, t) ≡ 〈i|Ŝ(t ′, t)|i〉. (50)

To calculate equation (50), we assume that Vkk′ (q) is multiplied by λ, that is

Vkk′(q) ⇒ λVkk′(q). (51)

Then, the following equation can be deduced:

∂

∂λ
g(t ′, t) = i

∑
k,k′

Vkk′ 〈i|Ŝ(t ′, t)|i〉
∫ t ′

t
ϕkk′(ττ+0; t t ′) dτ . (52)

Next, we define C(t, t ′) as

C(t ′, t) = ln g(t ′, t). (53)
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Consequently ∂
∂λ

C(t ′, t) is

∂

∂λ
C(t ′, t) = iV0u(q)

∑
kk′

∫ t ′

t
ϕkk′(ττ+0; t t ′) dτ = iV0u(q)

∫ t ′

t
ϕ(ττ+0; t t ′) dτ . (54)

The Green function ϕk′k(ττ+0, tt ′) can be expanded into the following form:

ϕ(ττ+0; tt ′) = ϕe(ττ+0; tt ′) = Ga(τ − τ ′)
(

1 + δ

π
(τ − τ ′)

[
1

τ ′ − t
+ 1

t ′ − τ ′

]
+ · · ·

)
. (55)

In equation (55), the superscripts e and a represent ‘emission’ and ‘absorption’, respectively.
By substituting equation (55) into (54), ∂

∂λ
C(t ′, t) can be expressed as

∂

∂λ
C(t ′, t) = iV0u(q)

[
(t ′ − t)Ga

λ(τ − τ+0) − 2i
ρδ(λ)

π
ln[i(t ′ − t)D]

]
, (56)

where δ(λ) satisfies

tan δ(λ) = −λπρV0u(q). (57)

Integrating equation (56) over λ, we obtain

C(t ′, t) = i(t ′ − t)V0u(q)

∫ 1

0
Ga

λ(τ − τ+0) dλ −
(

δ

π

)2

ln[i(t ′ − t)D]. (58)

In equation (58), we redefine δ ≡ δ(λ = 1). Finally g(t ′, t) can be given by

g(t ′, t) = 〈i|Ŝ(t ′, t)|i〉
= (i(t ′ − t)D)−( δ

π
)2

exp

[
i(t ′ − t)V0u(q)

∫ 1

0
Ga

λ(τ − τ+0) dλ

]
. (59)

By combining the above result with equation (47), we can express F(t − t ′) as follows:

F(t − t ′) = ei(t−t ′)(ξ−�)

( −iρ

t ′ − t

)
(i(t ′ − t)D)α, (60)

where

α ≡ 2
δ

π
−

(
δ

π

)2

and � ≡ V0u(q)

∫ 1

0
Ga

λ(τ − τ+0) dλ. (61)

In the above equation, � represents the energy shift due to the potential: this term indicates the
decrease of the initial state energy, which is induced by the screening of the image potential
by conduction electrons. Substituting equations (60) and (61) into equation (23), we can write
down the transition probability in the following form:

P(i → f) = 2|T0|2
h̄

Re

{∫ 0

−∞
d(t − t ′)ei(t−t ′)(ξ−�)

( −iρ

t ′ − t

)
(i(t ′ − t)D)α

}

= 2|T0|2
h̄

ρDαRe

{∫ ∞

0
dte−i(ξ−�)t

(−i

t

)
(it)α

}
t ′ − t → t, (62)

where ξ ≡ Ea + Kf − Ki as has been defined in equation (29).
From the phenomenological viewpoint, the decay due to various physical processes should

be considered; hence the mathematical term to represent this decay (exp(−γ t)) should be
involved and inserted in the above result. Finally we can express the transition probability
as follows:
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P(i → f) = 2|T0|2
h̄

ρDαRe

{∫ ∞

0
dte−(γ+i(ξ−�))t

(−i

t

)
(it)α

}

= 2|T0|2
h̄

ρDαRe

{
−i (i)α

�(α)

(γ + i(ξ − �))α

}

= 2|T0|2ρ
h̄

�(α)

(
D

R

)α

sin
(π

2
− φ

)
α, (63)

where �(x) is the gamma function,

R =
√

γ 2 + (ξ − �)2 and tan φ = ξ − �

γ

(
−π

2
� φ �

π

2

)
. (63′)

In particular, in the limit of γ → 0, which corresponds to the absence of phenomenological
decay, the transition probability can be given by

(i) � − ξ < 0.
From equation (63′)

lim
γ→+0

tan φ = lim
γ→+0

ξ − �

γ
= +∞ ∴ lim

γ→+0
φ = π/2. (64)

Hence we can deduce the following result by substituting equation (64) into (63):

P(i → f) = 0 (65)

(ii) � − ξ > 0.
From equation (63′)

lim
γ→+0

tan φ = lim
γ→+0

ξ − �

γ
= −∞ ∴ lim

γ→+0
φ = −π

2
. (66)

Accordingly, the transition probability is

P(i → f) = 2|T0|2ρ
h̄

�(α)

(
D

� − ξ

)α

sin πα = 2|T0|2ρ
h̄

(
D

� − ξ

)α
π

�(1 − α)

= 2|T0|2ρ
h̄

π

�(1 − α)

(
D

Ki − Kf − Ea + �

)α

. (67)

Figures 4(A) and (B) illustrate the transition probability calculated on the basis of
equations (63)–(67): singularity is revealed at the threshold (� − ξ = 0) when γ = 0
(figure 4(A)). On the other hand, an asymmetric peak is observed without showing a singularity
when γ �= 0 (figure 4(B)). The calculated transition probability of γ �= 0 is similar to those
observed in experiments of soft x-ray absorption and emission spectra of metals [35–37] and
of photoelectron spectroscopy on metal surfaces by the single-shot x-ray laser-induced time-
of-flight method [38]. We expect the neutralization probability to be expressed in the form
of figure 4(B), but experimental results have not been reported and/or obtained yet because
of the experimental difficulty of measuring a neutralization process occurring parallel to the
metal surface as illustrated in figure 1. However, we expect that our proposed experiments
(the measurement of neutralization probability versus � − ξ(=Ki − Kf − Ea + �)) will
become possible in the future, considering further development of the time-of-flight technique
and the measurement of the energy distribution of electrons together with x-ray photoemission
spectroscopy.

As shown in the above equation, the cut-off energy is �−ξ(=Ki−Kf−Ea+�). However,
life-time broadening of the excited atomic level and other factors should be considered and
involved; thus it seems a better description to replace Ki − Kf − Ea + � by � which denotes
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Figure 4. Schematic illustration of calculated transition probability, where ξ = Ea + Kf − Ki
(Ef, Ei and Ea are the energies of the final and initial states of the metal surface, and of the localized
electron of state |a〉). We set T = 0 K. As shown in equation (62), � ≡ V0

∫ 1
0 Ga

λ(τ − τ+0) dλ.
For convenience of calculation, we define probability = P(i → f)h̄/2|T0|2ρ with no dimension
and u(q) = √

1 − (q/2kF)2. (A) γ = 0 eV, D = 3 eV, V0 = 2 eV, ρ = 1/D (B) γ = 0.1 eV,
D = 3 eV, V0 = 2 eV, ρ = 1/D.

various broadening factors. Consequently the transition probability of equation (67) can be
modified and given in the following form:

P(i → f) = 2|T0|2ρ
h̄

π

�(1 − α)

(
D

�

)α

. (68)

As we have discussed in the previous paragraph, when V > 2vF, the neutralization process
is supposed to be proceeding without any formation of induced surface charge. In such a
case, the Landau–Zener formalism probably would be considered. Further detailed analysis
including the Landau–Zener process and virtual photon emission caused by the high velocity
of the ion will be needed.
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3. Conclusion

We have investigated the transition probability of a +1 ion being neutralized in the vicinity of a
metal surface, based on the Noziéres and Dominicis theory which was proposed to account
for the edge singularities in the x-ray absorption and emission spectra in metals, mainly
focusing on the effects due to the sudden disappearance of induced surface charge at the very
moment of neutralization. First, we have calculated the quantum state within the first-order
perturbation theory; thus it is disclosed that Anderson’s orthogonality theorem cannot hold
when |q| > 2kF because the induced charge cannot follow the ion motion. Secondly, referring
to the theoretical results obtained from the first-order perturbation calculation, we evaluated
the transition probability on the basis of the Noziéres and Dominicis theory. When the atomic
excited level Ea has s-wave symmetry (l = 0), the transition probability is enhanced. For the
case where the phase shift δ with l = 0 is dominant, α is given by

α = 2
δ

π
−

(
δ

π

)2

−
(

δ

π

)2

= 2
δ

π
− 2

(
δ

π

)2

,

where we have included ↑ and ↓ spin parts. For example, if we set δ
π

= 1
2 , then α = 1

2 is
obtained. Accordingly the transition probability is, as shown below, found to be enhanced:

P(i → f) ∝
(

D

�

) 1
2

In figure 4(B), we show the enhanced case with s-wave symmetry. Near the threshold,
the neutralization probability is enhanced, as shown in this figure. This enhancement becomes
clear with decreasing velocity of the ion. When the atomic level has l �= 0 symmetry and
δl = 0, α is usually given by α = −2( δ

π
)2. If we set δ

π
= 1

2 , then α = − 1
2 is obtained. The

transition probability is reduced.

P(i → f) ∝
(

D

�

)− 1
2

=
(

�

D

) 1
2

.

This result can be explained as follows. When the screening cloud near the surface induced by
the positive ion possesses the same symmetry as the atomic orbital, the transition probability is
enhanced. In our calculation we have assumed the coordinate where the moving ion is static.
Accordingly induced charge which follows the moving ion should also be supposed to be static;
thus we assume the induced potential is s-symmetry out of sphere charge distribution of moving
ion, as we have assumed in section 2.1. In addition, the distance between the ion and the metal
surface is large enough to assume spherical induced charge. On the other hand, when the atomic
orbital has different symmetry from the screening induced cloud, the probability is reduced
owing to the small overlap integral. In the latter case, a drastic rearrangement of electron cloud
in the final state is necessary to screen the charge.

When the ion velocity is very fast, induced charge cannot be formed. The neutralization
process is supposed to proceed without the presence of induced charge. A fast ion can excite
the plasmon and reduce its energy to lower than the plasma frequency.
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